Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365193

RESUMO

Favipiravir displays a rapid viral clearance, a high recovery rate and broad therapeutic safety; however, its oral administration was associated with systemic side effects in susceptible patients. Considering that the pulmonary route could provide a high drug concentration, and a safer application with less absorption into systemic circulation, it was aimed to elucidate whether favipiravir delivered via soft-mist inhaler has any deleterious effects on lung, liver and kidney tissues of healthy rats. Wistar albino rats of both sexes (n = 72) were placed in restrainers, and were given either saline or favipiravir (1, 2.5, 5 or 10 mg/kg in 1 mL saline) by inhalation within 2 min for 5 consecutive days. On the 6th day, electrocardiographic recording was obtained, and cardiac blood and lung tissues were collected. Favipiravir did not alter cardiac rhythm, blood cell counts, serum levels of alanine transaminase, aspartate transaminase, blood urea nitrogen, creatinine, urea or uric acid, and did not cause any significant changes in the pulmonary malondialdehyde, myeloperoxidase activity or antioxidant glutathione levels. Our data revealed that pulmonary use of favipiravir via soft-mist inhaler enables a high local concentration compared to plasma without oxidative lung injury or cardiac or hepatorenal dysfunction.

2.
Drug Deliv ; 29(1): 2846-2854, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36062490

RESUMO

Favipiravir, an RNA-dependent RNA polymerase (RdRp) inhibitor, is used to treat patients infected with influenza virus and most recently with SARS-CoV-2. However, poor accumulation of favipiravir in lung tissue following oral administration has required an alternative method of administration that directly targets the lungs. In this study, an inhalation solution of favipiravir at a concentration of 2 mg mL-1 was developed and characterized for the first time. The chemical stability of inhaled favipiravir solution in two different media, phosphate buffer saline (PBS) and normal saline (NS), was investigated under different conditions: 5 ± 3 °C, 25 ± 2 °C/60% RH ± 5% RH, and 40 ± 2 °C/75% RH ± 5% RH; in addition to constant light exposure. As a result, favipiravir solution in PBS revealed superior stability over 12 months at 5 ± 3 °C. Antiviral activity of favipiravir was assessed at the concentrations between 0.25 and 3 mg mL-1 with real time cell analyzer on Vero-E6 that were infected with SARS-CoV-2/B.1.36. The optimum concentration was found to be 2 mg mL-1, where minimum toxicity and sufficient antiviral activity was observed. Furthermore, cell viability assay against Calu-3 lung epithelial cells confirmed the biocompatibility of favipiravir at concentrations up to 50 µM (7.855 mg mL-1). The in vitro aerodynamic profiles of the developed inhaled favipiravir formulation, when delivered with soft-mist inhaler indicated good lung targeting properties. These results suggest that favipiravir solution prepared with PBS could be considered as a suitable and promising inhalation formulation for pulmonary delivery in the treatment of patients with COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Amidas , Antivirais/farmacologia , Humanos , Pulmão , Pirazinas , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
3.
J Pharm Sci ; 111(10): 2652-2661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35691607

RESUMO

Coronavirus Disease 2019 (COVID-19) pandemic has been on the agenda of humanity for more than 2 years. In the meantime, the pandemic has caused economic shutdowns, halt of daily lives and global mobility, overcrowding of the healthcare systems, panic, and worse, more than 6 million deaths. Today, there is still no specific therapy for COVID-19. Research focuses on repurposing of antiviral drugs that are licensed or currently in the research phase, with a known systemic safety profile. However, local safety profile should also be evaluated depending on the new indication, administration route and dosage form. Additionally, various vaccines have been developed. But the causative virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has undergone multiple variations, too. The premise that vaccines may suffice to eradicate new and all variants is unreliable, as they are based on earlier versions of the virus. Therefore, a specific medication therapy for COVID-19 is crucial and needed in order to prevent severe complications of the disease. Even though there is no specific drug that inhibits the replication of the disease-causing virus, among the current treatment options, systemic antivirals are the most medically appropriate. As SARS-CoV-2 directly targets the lungs and initiates lung damage, treating COVID-19 with inhalants can offer many advantages over the enteral/parenteral administration. Inhaled drug delivery provides higher drug concentration, specifically in the pulmonary system. This enables the reduction of systemic side effects and produces a rapid clinical response. In this article, the most frequently (systemically) used antiviral compounds are reviewed including Remdesivir, Favipiravir, Molnupiravir, Lopinavir-Ritonavir, Umifenovir, Chloroquine, Hydroxychloroquine and Heparin. A comprehensive literature search was conducted to provide insight into the potential inhaled use of these antiviral drugs and the current studies on inhalation therapy for COVID-19 was presented. A brief evaluation was also made on the use of inhaler devices in the treatment of COVID-19. Inhaled antivirals paired with suitable inhaler devices should be considered for COVID-19 treatment options.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais , Cloroquina , Heparina , Humanos , Hidroxicloroquina/uso terapêutico , Lopinavir , Ritonavir , SARS-CoV-2
4.
Pharmaceutics ; 13(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834183

RESUMO

In COVID-19-induced acute respiratory distress syndrome, the lungs are incapable of filling with sufficient air, leading to hypoxemia that results in high mortality among hospitalized patients. In clinical trials, low-molecular-weight heparin was administered via a specially designed soft-mist inhaler device in an investigator initiated, single-center, open-label, phase-IIb clinical trial. Patients with evidently worse clinical presentations were classed as the "Device Group"; 40 patients were given low-molecular-weight heparin via a soft mist inhaler at a dose of 4000 IU per administration, twice a day. The Control Group, also made up of 40 patients, received the standard therapy. The predetermined severity of hypoxemia and the peripheral oxygen saturation of patients were measured on the 1st and 10th days of treatment. The improvement was particularly striking in cases of severe hypoxemia. In the 10-day treatment, low-molecular-weight heparin was shown to significantly improve breathing capability when delivered via a soft-mist inhaler.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...